
www.umbc.edu

CMSC202
 Computer Science II for Majors

Lecture 14 –

Polymorphism

Dr. Katherine Gibson

www.umbc.edu

Last Class We Covered

• Miscellaneous topics:

– Friends

–Destructors

• Freeing memory in a structure

–Copy Constructors

–Assignment Operators

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To review inheritance

• To learn about overriding

• To begin to understand polymorphism

– Limitations of Inheritance

–Virtual Functions

–Abstract Classes & Function Types

–Virtual Function Tables

–Virtual Destructors/Constructors

4

www.umbc.edu

Review of Inheritance

www.umbc.edu

Review of Inheritance

• Specialization through sub classes

• Child class has direct access to

– Parent member functions and variables that are:

• ???

6

www.umbc.edu

Review of Inheritance

• Specialization through sub classes

• Child class has direct access to

– Parent member functions and variables that are:

• Public

• Protected

7

www.umbc.edu

Review of Inheritance

• Specialization through sub classes

• Child class has direct access to

– Parent member functions and variables that are:

• Public

• Protected

• Parent class has direct access to:

– ??????? in the child class

8

www.umbc.edu

Review of Inheritance

• Specialization through sub classes

• Child class has direct access to

– Parent member functions and variables that are:

• Public

• Protected

• Parent class has direct access to:

– Nothing in the child class

9

www.umbc.edu

What is Inherited

• public
members

• protected
members

• private

variables

Parent Class

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

10

www.umbc.edu

What is Inherited

Child Class

• child class
members

(functions &
variables)

• public
members

• protected
members

• private

variables

Parent Class

• private functions
• copy constructor
• assignment operator
• constructor
• destructor

11

www.umbc.edu

Overriding

www.umbc.edu

Specialization

• Child classes are meant to be
more specialized than parent classes

– Adding new member functions

– Adding new member variables

• Child classes can also specialize by overriding
parent class member functions

– Child class uses exact same function signature

13

www.umbc.edu

Overloading vs Overriding

• Overloading

– Use the same function name, but with different
parameters for each overloaded implementation

• Overriding

– Use the same function name and parameters, but
with a different implementation

– Child class method “hides” parent class method

– Only possible by using inheritance

14

www.umbc.edu

Overriding Examples

• For these examples, the Vehicle class now
contains these public functions:
void Upgrade();

void PrintSpecs();

void Move(double distance);

• Car class inherits all of these public functions

– That means it can therefore override them

15

www.umbc.edu

Basic Overriding Example

• Car class overrides Upgrade()
void Car::Upgrade()

{

 // entirely new Car-only code

}

• When Upgrade() is called on a object of type
Car, what happens?

– The Car::Upgrade() function is invoked

16

www.umbc.edu

Overriding (and Calling) Example

• Car class overrides and calls PrintSpecs()
void Car::PrintSpecs()

{

 Vehicle::PrintSpecs();

 // additional Car-only code

}

• Can explicitly call a parent’s original function
by using the scope resolution operator

17

www.umbc.edu

Attempted Overloading Example

• Car class attempts to overload the function
Move(double distance) with new parameters
void Car::Move(double distance,

 double avgSpeed)

{

 // new overloaded Car-only code

}

• But this does something we weren’t expecting!
18

www.umbc.edu

Precedence

• Overriding takes precedence over overloading

– Instead of overloading the Move() function, the
compiler assumes we are trying to override it

• Declaring Car::Move(2 parameters)

• Overrides Vehicle::Move(1 parameter)

• We no longer have access to the original
Move() function from the Vehicle class

19

www.umbc.edu

Overloading in Child Class

• To overload, we must have both original and
overloaded functions in child class
void Car::Move(double distance);

void Car::Move(double distance,

 double avgSpeed);

• The “original” one parameter function
can then explicitly call the parent function

20

www.umbc.edu

Limitations of Inheritance

www.umbc.edu

Car Example

class SUV: public Car {/*etc*/};

class Sedan: public Car {/*etc*/};

class Van: public Car {/*etc*/};

class Jeep: public Car {/*etc*/};

SUV Sedan

Car

Jeep Van

22

www.umbc.edu

Car Rental Example

• We want to implement a catalog of different
types of cars available for rental

• How could we do this?

– Multiple vectors, one for each type (boo!)

– Combine all the child classes into one giant class
with info for every kind of car (yuck! don’t do this!)

• We can accomplish this with a single vector

– Using polymorphism

23

www.umbc.edu

What is Polymorphism?

• Ability to manipulate objects in a
type-independent way

• Already done to an extent via overriding

– Child class overrides a parent class function

• Can take it further using subtyping,
AKA inclusion polymorphism

24

www.umbc.edu

Using Polymorphism

• A pointer of a parent class type can point to
an object of a child class type

Vehicle *vehiclePtr = &myCar;

• Why is this valid?

–Because myCar is-a Vehicle

25

www.umbc.edu

Polymorphism: Car Rental

26

vector <Car*> rentalList;

 vector of Car* objects

www.umbc.edu

Polymorphism: Car Rental

27

vector <Car*> rentalList;

• Can populate the vector with
any of Car’s child classes

SUV SUV Jeep Van Jeep Sedan Sedan SUV

vector of Car* objects

www.umbc.edu

Limitations of Polymorphism

• Parent classes do not inherit from child classes

– What about public member variables and functions?

28

www.umbc.edu

Limitations of Polymorphism

• Parent classes do not inherit from child classes

– Not even public member variables and functions

Vehicle *vehiclePtr = &myCar;

• Which version of PrintSpecs() does this call?

vehiclePtr->PrintSpecs();

Vehicle::PrintSpecs()

29

www.umbc.edu

Limitations of Polymorphism

• Parent classes do not inherit from child classes

– Not even public member variables and functions

Vehicle *vehiclePtr = &myCar;

• Will this work?
vehiclePtr->RepaintCar();

– NO! RepaintCar() is a function of the
Car child class, not the Vehicle class

30

www.umbc.edu

Virtual Functions

www.umbc.edu

Virtual Functions

• Can grant access to child methods by
using virtual functions

• Virtual functions are how C++ implements
late binding

– Used when the child class implementation is
unknown or variable at parent class creation time

32

www.umbc.edu

Late Binding

• Simply put, binding is determined at run time

– As opposed to at compile time

• In the context of polymorphism, you’re saying

“I don’t know for sure how this function is going to
be implemented, so wait until it’s used and then get
the implementation from the object instance.”

33

www.umbc.edu

Using Virtual Functions

• Declare the function in the parent class with
the keyword virtual in front

virtual void Drive();

• Only use virtual with the prototype

// don't do this

virtual void Vehicle::Drive();

34

www.umbc.edu

Using Virtual Functions

• The corresponding child class function does
not require the virtual keyword

• Should still include it, for clarity’s sake

– Makes it obvious the function is virtual,
even without looking at the parent class

// inside the Car class

virtual void Drive();

35

www.umbc.edu

Abstract Classes &
Function Types

36

www.umbc.edu

Function Types – Virtual

virtual void Drive();

• Parent class must have an implementation

– Even if it’s trivial or empty

• Child classes may override if they choose to

– If not overridden, parent class definition used

37

www.umbc.edu

Function Types – Pure Virtual

virtual void Drive() = 0;

• Denote pure virtual by the “ = 0” at the end

• The parent class has no implementation
of this function

– Child classes must have an implementation

– Parent class is now an abstract class

38

www.umbc.edu

Abstract Classes

• An abstract class is one that contains a function
that is pure virtual

• Cannot declare abstract class objects

– Why?

– They have functions whose behavior is not defined!

• This means abstract classes can only
be used as base classes

39

www.umbc.edu

Overview of Polymorphism

• Assume we have Vehicle *vehiclePtr = &myCar;

• And this method call: vehiclePtr->Drive();

40

prototype Vehicle class Car class

void Drive()
• Can implement function
• Can create Vehicle

• Can implement function
• Can create Car
• Calls Vehicle::Drive

virtual void

Drive()

• Can implement function
• Can create Vehicle

• Can implement function
• Can create Car
• Calls Car::Drive

virtual void

Drive() = 0

• Cannot implement function
• Cannot create Vehicle

• Must implement function
• Can create Car
• Calls Car::Drive

www.umbc.edu

Overview of Polymorphism

• Assume we have Vehicle *vehiclePtr = &myCar;

• And this method call: vehiclePtr->Drive();

41

prototype Vehicle class Car class

void Drive()
• Can implement function
• Can create Vehicle

• Can implement function
• Can create Car
• Calls Vehicle::Drive

virtual void

Drive()

• Can implement function
• Can create Vehicle

• Can implement function
• Can create Car
• Calls Car::Drive

virtual void

Drive() = 0

• Cannot implement function
• Cannot create Vehicle

• Must implement function
• Can create Car
• Calls Car::Drive

www.umbc.edu

Overview of Polymorphism

• Assume we have Vehicle *vehiclePtr = &myCar;

• And this method call: vehiclePtr->Drive();

42

prototype Vehicle class Car class

void Drive()
• Can implement function
• Can create Vehicle

• Can implement function
• Can create Car
• Calls Vehicle::Drive

virtual void

Drive()

• Can implement function
• Can create Vehicle

• Can implement function
• Can create Car
• Calls Car::Drive

virtual void

Drive() = 0

• Cannot implement function
• Cannot create Vehicle

• Must implement function
• Can create Car
• Calls Car::Drive

If no Car::Drive
implementation, calls
Vehicle::Drive This is a pure virtual

function, and Vehicle is
now an abstract class

www.umbc.edu

Announcements

• Project 3 is out – get started now!

–Due Thursday, March 31st

• Exam 2 is in 1.5 weeks

– Will focus heavily on:

• Classes

• Inheritance

• Linked Lists

• Dynamic Memory

43

